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Abstract—The ray theory is applied to the stress-focusing effects in a uniformly heated transversely
isotropic solid sphere. The stress-focusing effect is the phenomenon that, under an instantaneous
heating, stress waves reflected from the free surface of the sphere resuit in very high stresses at the
center. Using the ray theory, the Fourier transformed solution of stress waves in the sphere is sorted
into rays according to the ray path of multiply-reflected waves. The inverse transform of each ray
gives rise to the exact solution of the transient response up to the arrival time of the next ray. The
results reveal that stresses peak periodically at regular intervals and the stress peak at the center of
the sphere depends on the anisotropy of the sphere.

INTRODUCTION

When brittle materials are subjected to a rapid change in temperature, such as thermal
shock, substantial stresses develop. Resistance to the weakening of the fracture under
these conditions is called thermal endurance, thermal stress resistance, or thermal shock
resistance. The effect of thermal stresses on different kinds of materials depends not only
on material characteristics but also on stress level, stress distribution in the body, and stress
duration. Hence, it is very important to determine the actual stress in a brittle material
under given conditions of heat transfer.

In this paper we solve exactly the problem of thermal shock in a transversely isotropic
sphere. When a transversely isotropic sphere is subjected to a uniform temperature rise, a
stress wave occurs at the surface the moment thermal impact is applied. The stress wave at
the surface proceeds radially inward to the center of the sphere. The waves may accumulate
at the center and give rise to very large stress magnitudes, even though the initial thermal
stress is relatively small. This phenomenon is called the stress-focusing effect in Ho (1976).

As for the study of the stress-focusing effect in a sphere, Mann-Nachbar and Nachbar
(1970) obtained the closed-form solution by using the Laplace transformation. The solution,
however, is given in the form of a series expansion in the Laplace transformed space. The
inverse Laplace transformation of the solution is very difficult. Therefore, they only dis-
cussed the behavior of the stress focusing at the center of the sphere mathematically.
Recently Hata (1991) formed an exact solution to the problem of stress-focusing effects in
a uniform heated solid sphere by applying the ray theory. The results show the interesting
phenomenon that the stresses caused by the stress-focusing effects peak periodically at
regular intervals. This paper analyses the effect of thermal stress waves in a transversely
isotropic sphere using the same method. By using the ray theory, the Fourier transformed
solution of stress waves in a sphere is sorted into rays according to the ray path of multiply-
reflected waves. The inverse transform of each ray gives rise to the exact solution of the
transient response up to the arrival time of the next ray.

The numerical results give clear indications of a stress-focusing effect in a transversely
isotropic sphere. We also show how the behavior of stress at the center depends on the
anisotropy of the sphere mathematically.
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Fig. 1. Coordinate system and heat condition.

FORMULATION OF PROBLEM

A transversely isotropic, homogeneous, elastic solid sphere of radius 4 is subjected to
a sudden uniform temperature rise as shown in Fig. 1. The stress-strain relations in a polar-
symmetric transversely isotropic sphere are given from Hata and Atsumi (1969) by

€, = S,Gr + S;—(«;chx + S;'963 +a¥T
€y = S;90, +Sp04+ S0y + T M
ey = S0, + S04 +Seoy+ oy T

where T is temperature and e,, e, e; are strain components of r, ¢ and 0 directions,
respectively. o0,,0,, 05 are the principal stresses. «, and o, are the coefficients of thermal
expansion to the radial and tangential directions, respectively. The elastic compliance
constants in eqn (1) can be written in terms of Young’s moduli and Poisson’s ratios as
follows:

Sr = I/Era Sr(? = ~vr9,’iEr R
. 2

Sy = 1/E,, Sgs = "‘V¢(;/Ee

where E, and E, are Young’s moduli in the radial and tangential planes, respectively. v, is
Poisson’s ratio which characterizes the ratio of contraction in the 8-direction to extension
in the r-direction, and v, is the Poisson’s ratio which characterizes the ratio of contraction
in the -direction to the extension in the ¢-direction. In this paper, 6, = 6, and ¢; = ¢, are
satisfied because of the polar symmetry. Solving egn (1) for ¢, and oy, we get

]

6, = e [(1 — Vg )€, + 2v,000 85 — E7
AT Bo, [(1—vgp) 50 85— &, | &)
1 .
%= 41 B) Vol +ep—E5]
where
wy = EJE, A= (SQSGSr—SrzS)/Sr
B = (SHSr*‘S;Zﬁ)/Sr CS)

f? = (1 —vgp)a, T+ PAO Y
EV = v, THoy T

Under the condition of polar symmetry, the equation of motion is reduced to
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where p, is the mass per unit volume of a sphere and u is the radial displacement. The
strain—displacement relations are

e, = O0u/or, ey =ujr. (6)

Substituting eqns (3) into (5) and using eqn (6), we have the displacement equation of
equilibrium as

o*u 2 0u u 10 1 .,
e ===+ t 7
ort " ror 2Krz C} ot + r2f 1), )

_ (1—vg46) _ (1-vy)
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2
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where

, ®)

where C, is the dilatational wave speed.
For a transversely isotropic, homogeneous, elastic sphere, subject to uniform heating,
the boundary condition is
g (r,fy=0 at r=5b. )
The sphere is at rest prior to time ¢ = 0 and the initial conditions are
u(r,t) = ou(r,)/ot =0 at t=0. (10)
THERMOELASTIC SOLUTION
The temperature distribution is assumed to have the following form

T = T,H(), (1)

where T, is a constant temperature and H(¢) is the Heaviside step function and ¢ is time.
Substituting eqn (11) into (3), the thermal stresses are given by

o = ToHO[(1 —vgp+2v,0,) ([, —@11) — (1 — k) (1 — )]
r (A+B)o,(1—K)(1—v4)

, (12)
T ToHO[(ve+ DU, ~w ) —(1-x)(1 ~Vexae)Ia]
(A+B)(1—x)(1—vy)
where
L= (1 —vgg)o, 4+ 2v,900,09, L = V,90t, + . (13)

For an isotropic sphere eqns (12) reduce to 6] = 6] = —(14vo)TopoCiaoH({®)/(1—v,),
where v, is Poisson’s ratio and «, is the coefficient of thermal expansion in an isotropic
sphere. The stresses of eqn (12) do not satisfy the boundary condition of eqn (9). In order
to satisfy the boundary condition we must introduce the elastodynamic solution #° such
that the final solution u = u” + u° satisfies all the boundary conditions of the problem. The
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corresponding boundary condition to #° is that the radial displacement at r = 0 vanishes
and the radial stress ¢° satisfies the condition

oi(r,f) = —og] at r=>b. (14)

For convenience, it is appropriate to introduce non-dimensional quantities which are given
by

U=u'lb, 1=1Cy/b, p=r/h
o), = 6}/(@,TopoC}) . (15)
oh = 05/(, TopoC) = /(@ TopeCr), (i=T,S)

The basic equation of the elastodynamic solution is derived from eqn (7) as

62?5‘ 2 a S S jlv‘\‘
RS S L S (16)
dp  p dp p- T

We shall make use of the Fourier transform on 1, defined as

{(p,0) = J l(p,t)e™ dr
’ (17)

i+ o

1 - )
{p,7) = I J {(p,a)e "™ da

e

Applying the Fourier transform to eqn (16), the transformed solution which satisfies the
boundary conditions is

s —P@)

¥ = G -[9V (ap) + g7 (ap)], (18)
12 22

where
k= (1—-v,)0 /(1 —v4) )
v+ (1/2) = /14 8x/2
Ciy = agi (ab)+mb~'g\" (ab) g
C,y = agl® | (ab) +mb 'g'? (ab)
plo) = &/ (b, ) /(2. TopoC})
m = 2vy0,/(1—vge) —(v+1) ]

(19)

The functions ¢{”(z) and ¢! (z) in eqns (18) and (19) are given by

0 (2) = /@) HD,
9\"(2) = /n/(22) l,z(z>}’ 0

95,2)(2) = \/ﬁ/ég)Ht,i) 1/2(2)
v+ 1/

order v+ 1/2, respectively.
Here, we introduce a reflection coefficient R, which is defined as

where H(),,(z) and H'?,(z) are the Hankel functions of the first and second kinds of
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o (21)

R(a) =

The function R is the reflection coefficient for an outgoing spherical wave, which is reflected
at the traction-free surface p = 1. Hence, we have from eqn (18) that

0= - FO U+ R R+ R+ @)+ a0 00 = 3 B0 @)

22
where

Po(p,0) = —p(@)g{?(2p)/C2 A
$1(p, o) = —p(@)gi"(2p)/C>2

$:(p,0) = —R(x) {@}gﬁz’(a/))

v

Ca2 23)
p(a
5:0.9) = ~R@ {2 (e
22
$i(p,®) = —R(@);_2(p, 0) (j=4))
The corresponding transformed stresses are given from eqn (3) by
6{S 2Vrg(1)1 {S:I [ 2v,9wl (ﬁ]
O'—S = [— + — | = (54, + s
=L op t v o~ B L% Tmva o6
s S ©
=S _ @, v g__’_{_]: o [ ) +@:|
) [ "0 T o )T v L0

The inverse transform of each term represents the transient wave which is continuously
reflected between the center and the surface. The complete solution is

© 1 ieg+ 0 i
(=Y E{ &i(p,2) e da. (25)

j=0 igg— 0

TRANSIENT SOLUTION OF ANISOTROPIC SPHERE

As an explicit example, we consider the problem of the stress-focusing effect in a
uniformly heated transversely isotropic sphere. The anisotropic property of the sphere is
taken to be x = 3 (v = 2) in eqn (19). From eqn (20) we have

@) = K@) = —z* Bz +i(3 )} e
99(2) = K@) = —z* (32 —i(3—2%)} e‘i’}’ (26)

where 45" (z) and h$?(z) are the second order spherical Hankel functions of the first and
second kinds, respectively. Substituting eqns (23) into (25), the inverse Fourier transforms

of ¢o(p,®) and ¢,(p, ) are given by
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= !-)- {3ajp*i(3majgp2)}g(f+ﬂ-—‘I)e‘"i"";(f+p—l)

do(p, 1) = o’ Z:O {40 +3i(m— Da? + 6mo, — 3mi}
p & BuptiB—afp)Ha—p—1)e ™ 0 (27)
P o {4a,-3+3i(m—l)a,»2+6moc_f—3mi}

The poles o; (f = 1,2,3,4) in eqns (27) are

oy =0, oy =7, o=y 04=7Ys, (28)
where
y= {3/ Ao —d] /Ay~ (m—1)/3}
72 = i{w 3/ —df(0 3/ de)— (m—1)/3}
va=1{0? Y/ Aa~d/{e’ /A~ (m—1)j3} |
Ay= —I+/P+d’, w=(—1+/3)2
I= {(m—1)/3}?+m(m~—1)/2+3m/2
d= —{(m—1)/3}’~m J

@9

It is seen from eqn (23) that, once the inversions of ¢, and ¢, are carried out, the
higher order terms in the series can be obtained by a convolution. Denoting the inverse
transform of ¢,( p, @) by ¢,(p, t), we find from eqn (23) that

di{p,7) = ﬂ RO ¢;2(p, 71— dE (22, (30)

where

R(t) = —8(z—2)+i Z 4@ H(z—2). 31)

7

In eqn (31) 4(1) is a delta function and the function g{y) is

2i{y*(m—1)—3m}exp { —iy(r—2)}

{7 +9%im—1) + 3my —3im} (32)

q(y) = —

Therefore, the elastodynamic stresses are given from the displacement potential ¢,(p, 7) by

eS(p1) = 3 [0 1), + {(m+3)/p} (0, D]
i=o (33)

2

7¥(p0) = T {0+ 326,05+ (1) 0. )

where m = --3/7 in the case of the anisotropic sphere of k = 3 in eqn (19).
Finally, the complete solution of the problem is obtained by the summation of the
solutions of the thermal and dynamic problems as follows:

Ui(pa T) = O-ir(p’ T)+a;’g(p9 T)a (Z = 9)9 (34)

where
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ap(p9 ‘E) = ar(p9 z)/(arTOPGC?‘)s aﬂ(ps 7) = Gs(p’ qs)/(“:'TG PGC},)- (35)

NUMERICAL RESULTS AND DISCUSSION

When a transversely isotropic solid sphere is brought suddenly to a uniform tem-
perature rise, stress-focusing effects occur. In order to analyse the phenomena, we performed
numerical calculations for a transversely isotropic sphere with x = 3, which was heated
suddenly to a uniform temperature T, at ¢ = 0. The numerical integrations were carried
out using Simpson’s formula. The results of the numerical evaluation of stress variation
are illustrated in Figs 2-4. In these figures the non-dimensional variables t* and o} are
used, which are defined as
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Fig. 3. Stress-focusing effect of the tangential stress 6¥in a transversely isotropic sphere.
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Fig. 4. Variation of ¢§" as a function of individual rays and sum of the first two rays at r/b = 0.05.
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t* = C. /b, o} = (o;/o)) (i=p,0). (36)

The behavior of radial stress ¥ as a function of time is illustrated in Fig. 2 at the
location #/b = 0.05, 0.5 and 1. In Fig. 2 the stress ¢ is initially compressive because of the
instantaneous heating. After this period, the waves are reflected from the surface and
accumulate at the center. As the wave approaches the center, the maximum value of o}
increases higher and higher as shown in Fig. 2. The peak stress o at r/b = 0.05 peaks
periodically at an interval of /¥ = 2.

Figure 3 shows the variation in tangential stress of at different values of r/b as a
function of time. The behavior of tangential stress o is similar to that of the radial stress.
In the figures we also observe that the stress near the center peaks periodically.

Comparing these results with those in an isotropic sphere in Hata (1991), it is seen
that the stress-focusing effects occur when stress waves are reflected from the surface of the
sphere and accumulate radially toward the center. However, we find that the compressive
stress peaks are observed in Figs 2 and 3 for a transversely isotropic sphere, but they are
not observed in an isotropic sphere.

We should explain the reason why the stress peak at p = 0.05 changes from tension to
compression at * = | in Fig. 3. The values of the first two rays of ¢§ at p = 0.05 are
shown in Fig. 4. The value of the sum of the first two rays, 63 (¢, +¢,). of @} is also
shown. In Fig. 4 the first ray, 63 (¢), arrives at r* = 0.95 at p = 0.05, obtained from eqn
(27), and diverges in time #*. The second ray, o} (¢,), arrives at * = 1.05 at p = 0.05,
obtained from egn (27), and also diverges in time t*. However, we can observe that the
sum of the first and second rays, 3 (¢,+ ), of the stress o5 shows the positive peak at
* = 0.95 and the stress peak changes from positive to negative sharply the moment the
second ray arrives. After that, a pair of rays cancel each other and the sum is convergent.
The same phenomena can be observed in other ray groups in Figs 2 and 3.

Here, we discuss the behavior of displacement and stresses at the center of the sphere
precisely. Substitution of eqns (20) into (22) yields

L)

0= = (I+RER R+ )10, (2p) +0.7 (2p)]
= Py ReR AR ST ) 37)
-TC,, 2ap 2{2P)s .

where J, , 1,,(2) is the v+ 1/2 order Bessel function of the first kind.
The Bessel function J,, ;,(z) near z = 0 takes the form

1 zy v
ARy (2) (38)

where I'(z) is the Gamma function. Substituting eqn (38) into (37), we find that the non-
dimensional transformed displacement is

&= 0(p. (39)

Since v is positive because k > 0 in eqn (19), the transformed displacement £ becomes zero
as p approaches zero. Therefore the radial displacement at p = 0 vanishes, and the boundary

condition is satisfied.
Next, we discuss the behavior of stresses at the center of the sphere. From eqn (24)

the transformed radial stress is given by
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2v,90, (‘50+<]§1):|

65 =(1+R+R*+R*+ ~--)[(<ﬁo+d31)ﬁp+

(1 —=vy0) P
P(“) \[ 2 [{ 2%9“1}-]»“;2(059)
sz (A+R+R*+R*+ - (1“‘%0) (o)
Jv+ 2
] )

Substituting eqn (38) into (40) the radial stress may be denoted by
&5 =0(p). @)

Here, we encounter these singularities of distribution of stresses in a body with curvi-
linear anisotropy which, in the case of the existence of an axis of anisotropy, was noted in
Lekhnitskii (1963). For v < 1 the center of the sphere must be excluded from consideration
by surrounding it with a spherical surface of small radius. When v is not less than one, the
radial stress 65 takes two different values when p is equal to zero as follows:

G5 =0 when v>1 (anisotropic case)
75 = 0(1) when v=1 (isotropic case) “42)

The foregoing discussion is also true in the case of the tangential stress. Therefore, in the
case of a transversely isotropic sphere with v = 2 which is treated in the paper, we observe
that the stresses near the center increase more and more as the wave approaches the center,
as shown in Figs 2—4. These stresses, however, must vanish at the center of the sphere from
eqn (42). It is concluded that the stress-focusing effect may occur near the center of the
sphere, and not at the center of the sphere.

Here, we discuss the singular behaviors of both displacement and stresses in the
neighborhood of the center of a transversely isotropic sphere with the properties of k = 3
(v = 2). The stress motion generated in an initially undisturbed sphere by the application
of a uniform temperature may be analysed from eqns (27)—(33). We find that the phase of
the first incoming wave denoted by the function ¢, is «,(t+ p — 1), while the phase of the
first outgoing wave denoted by the function ¢, is a;(t—p—1). These two waves interfere
with each other in the neighborhood of p = 0 at time t = 1. An inspection of eqn (27)
suggests that the first incoming wave denoted by ¢, rises sharply in the order of p~ 3, while
the first outgoing wave denoted by ¢, falls sharply in the order of p— 3. Therefore, the
infinity of center displacement in the sphere behaves as a Dirac delta function. From eqn
(30) it can be seen that the other singularities also behave like Dirac delta functions. The
foregoing discussion is true for the case of stress distributions. Substituting eqns (27) and
(30) into (33), we find the order of singularity of stress distribution is O(p~ ).

CONCLUSION

In this paper, applying the ray theory to the problem of stress-focusing effect in a
uniformly heated transversely isotropic sphere, we show that the complicated Fourier
transformed solutions of the problem lead to simple solutions, which are appropriate to
the application of the inversion of Fourier transform. We also point out that the behavior
of stress-focusing effect at the center of the transversely isotropic sphere depends on the
anisotropy of the sphere.

Numerical results show that the peaks of stresses due to rapid heating become higher
and higher as the waves propagate toward the center of a sphere and the peaks of com-
pressive stress are observed only in a transversely isotropic sphere.
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